Would humans evolve again if we rewound time?

What would happen if the hands of time were turned back to an arbitrary point in our evolutionary history and we restarted the clock? American palaeontologist Stephen Jay Gould proposed this famous thought experiment in the late 1980s C and it still grips the imagination of evolutionary biologists today.

如果让时光退回到人类进化史上的任意一个时间点,重新开始会怎样?美国古生物学家古尔德(Stephen Jay Gould)在上世纪80年代末提出了这一著名的假设思考,至今仍牵动着进化生物学家的想象力。

Gould reckoned that if time was rewound, then evolution would drive life down a completely different path and humans would never re-evolve. In fact, he felt humanity’s evolution was so rare that we could replay the tape of life a million times and we wouldn’t see anything like Homo sapiens arise again.


His reasoning was that chance events play a huge role in evolution. These include enormous mass extinction events C such as cataclysmic asteroid impacts and volcanic eruptions. But chance events also operate at the molecular scale. Genetic mutation, which forms the basis of evolutionary adaptation, is reliant on chance events.


Put simply, evolution is the product of random mutation. A rare few mutations can improve an organism’s chance of survival in certain environments over others. The split from one species into two starts from such rare mutations that become common over time. But further random processes can still interfere, potentially leading to a loss of beneficial mutations and increasing harmful mutations over time. This inbuilt randomness ought to suggest you’d get different life forms if you replayed the tape of life.


Of course, in reality, it’s impossible to turn back the clock in this way. We’ll never know for sure just how likely it was to have arrived at this moment as we are. Fortunately, however, experimental evolutionary biologists do have the means to test some of Gould’s theories on a microscale with bacteria.


Microorganisms divide and evolve very quickly. We can therefore freeze billions of identical cells in time and store them indefinitely. This allows us to take a subset of these cells, challenge them to grow in new environments and monitor their adaptive changes in real time. We can go from the “present” to the “future” and back again as many times as we like C essentially replaying the tape of life in a test tube.


Many bacterial evolution studies have found, perhaps surprisingly, that evolution often follows very predictable paths over the short term, with the same traits and genetic solutions frequently cropping up. Consider, for example, a long-term experiment, in which 12 independent populations of Escherichia coli founded by a single clone, have been continuously evolving since 1988. That’s over 65,000 generations C there have only been 7,500-10,000 generations since modern Homo sapiens appeared. All the evolving populations in this experiment show higher fitness, faster growth and larger cells than their ancestor. This suggests that organisms have some constraints on how they can evolve.


There are evolutionary forces that keep evolving organisms on the straight and narrow. Natural selection is the “guiding hand” of evolution, reigning in the chaos of random mutations and abetting beneficial mutations. This means many genetic changes will fade from existence over time, with only the best enduring. This can also lead to the same solutions of survival being realised in completely unrelated species.


We find evidence for this in evolutionary history where species that are not closely related, but share similar environments, develop a similar trait. For example, extinct pterosaurs and birds both evolved wings as well as a distinct beak, but not from a recent common ancestor. So essentially wings and beaks evolved twice, in parallel, because of evolutionary pressures.


But genetic architecture is also important. Not all genes are created equal: some have very important jobs compared to others. Genes are frequently organised into networks, that are comparable to circuits, complete with redundant switches and “master switches”. Mutations in “master switches” naturally result in much bigger changes, because of the knock-on effect felt by all genes under its control. This means that certain locations in the genome will contribute to evolution more frequently, or with a larger effect, than others C biasing evolutionary outcomes.


But what about the underlying physical laws C do they favour predictable evolution? At very large scales, it appears so. We know of many laws governing our universe that are certain. Gravity, for example C for which we owe our oceans, thick atmosphere and the nuclear fusion in the sun that showers us with energy C is a predictable force. Isaac Newton’s theories, based on large scale deterministic forces, can also be used to describe many systems on large scales. These describe the universe as perfectly predictable.

那么基本的物理规律呢?它们是否支持可以预测的进化?在非常大的尺度上看起来是这样的。我们知道很多关于宇宙规律的理论是确定的。比如,重力是一种可以预测的力量。因为有重力,才有海洋、厚厚的大气层和为我们提供能量的太阳核聚变。牛顿(Isaac Newton)理论基于大范畴的确定性,也可以用来描述大规模的系统。它们将宇宙描述为完全可预测的。

If Newton’s view was to remain perfectly true, the evolution of humans was inevitable. However, this comforting predictability was shattered by the discovery of the contradictory but fantastical world of quantum mechanics in the 20th Century. At the smallest scales of atoms and particles, true randomness is at play C meaning our world is unpredictable at the most fundamental level.


This means that the broad “rules” for evolution would remain the same no matter how many times we replayed the tape. There would always be an evolutionary advantage for organisms that harvest solar power. There would always be opportunity for those that make use of the abundant gases in the atmosphere. And from these adaptations, we may predictably see the emergence of familiar ecosystems. But ultimately, randomness, which is built into many evolutionary processes, will remove our ability to “see into the future” with complete certainty.


There is a problem in astronomy that acts as a fitting analogy. In the 1700s, a mathematical institute offered a prize for solving the “three-body problem”, involving accurately describing the gravitational relationship and resultant orbits of the sun, Earth and moon.


The winner essentially proved that the problem couldn’t be solved exactly. Much like the chaos introduced by random mutations, a little bit of starting error would inevitably grow, meaning that you couldn’t easily determine where the three bodies would end up in the future. But as the dominant partner, the sun dictates the orbits of all three to an extent C allowing us to narrow the possible positions of the bodies to within a range.


This is much like the guiding hands of evolution, which tether adapting organisms to familiar routes. We may not be entirely sure where we’d end up if we rewound time, but the paths available to evolving organisms are far from limitless. And so maybe humans would never appear again, but it’s likely that whatever alien world replaced ours, it would be a familiar place.



本文由 语料库 作者:Tmxchina 发表,其版权均为 语料库 所有,文章内容系作者个人观点,不代表 语料库 对观点赞同或支持。如需转载,请注明文章来源。