纽约时报 | 为何基因编辑能创造如此多工作机会?

Why gene editing could create so many jobs 为何基因编辑能创造如此多 […]

Why gene editing could create so many jobs

Lying back on his hospital bed, Brian Madeux gives a tense smile as he’s hooked up to an intravenous drip. Inside the bag of liquid above his head are billions of tiny fragments of DNA designed to be inserted into his genome, the biological instruction manual found in every cell of the body.

躺在医院的病床上,马德(Brian Madeux)打着吊瓶,脸上露出紧张的微笑。输入他静脉的是经设计而插入他基因组的数十亿个小DNA片段。基因组是人体每个细胞内的生物说明手册。

The 44-year-old from Phoenix, Arizona, who has lived with a rare, life-threatening genetic condition known as Hunter’s Syndrome since birth, last November became the first person in the world to undergo a new type of treatment that edits genes inside his body.


Minute “molecular scissors” were added to his bloodstream to snip the DNA in his liver cells and insert a gene to repair the defective one he has carried all his life.


"We are at the start of a new frontier of genomic medicine," says Sandy Macrae, chief executive of Sangamo Therapeutics, the biotechnology firm developing the treatment. While it is still too soon to determine how successful the editing of Madeux’s genome has been, it marks a milestone in a new field of science that is widely predicted to revolutionise medicine.

麦克雷(Sandy Macrae)是发展这项治疗的生物科技公司圣加蒙治疗(Sangamo Therapeutics)的首席执行官。他说,“我们现站在基因医学最新前沿的开端”。谈论马德的基因编辑治疗会有多成功,现在还言之过早,但已可以说,是这一广泛预测会掀起医学革命的新领域之里程碑。

As more treatments that rely on gene editing move from research laboratories into hospitals around the world, the demand for the skilled genetic engineers who make it possible is expected to soar. The UK government predicts there could be more than 18,000 new jobs created by gene and cell therapy in Britain alone by 2030, while the US Bureau of Labor Statistics estimates it will see a 7% increase in jobs for biomedical engineers and a 13% increase in medical scientists, together accounting for around 17,500 jobs.


But there will also be a need for people away from the laboratory bench, including those who can help make sense of the huge amounts of data that will be generated as medical treatment becomes increasingly personalised to patients’ individual genomes.


“Gene therapy is rapidly becoming an accepted and growing part of the medical research and development industry,” says Michele Calos, president of the American Society of Gene and Cell Therapy and a professor of genetics at Stanford University. “The growth of established and new gene therapy companies is expected to be accompanied by an increase in jobs, as these companies recruit scientists to staff their expanded operations.

卡洛斯(Michele Calos)是美国基因与细胞治疗学会主席、斯坦福大学的遗传学教授,她说:“基因治疗已迅速成为医学研究和产业发展的一部分,而且这一部分增长很快。老基因治疗公司的发展和新基因治疗公司的出现会增加许多就业机会,因为这些公司需要为拓展业务招募科学家。”

“The gene therapy industry requires a range of graduates, with backgrounds in scientific fields like genetics, medicine, molecular biology, virology, bioengineering and chemical engineering, as well as business graduates.”


Much of the hype around gene editing lies in its ability to correct genetic defects that currently have no cure, such as cystic fibrosis and haemophilia. Many of the major pharmaceutical companies are betting on it becoming a key tool in the future of healthcare.


According to some projections, the global genome editing market is expected to double in size over the five years from 2017 to reach a value of $6.28bn (£4.84bn). Earlier this year, the UK government announced it was investing £60m ($76m) into a new cell and gene therapy manufacturing centre to help speed up the development of new treatments. In the US, the National Human Genome Research Institute predicts there will be a “considerable” increase in demand for employees in tandem with this growth.


There are already some 2,700 clinical trials using gene therapies under way or approved around the world, aiming to combat diseases as diverse as cancer, muscular dystrophy and sickle cell anaemia. Most of the small gene therapy companies behind these trials have partnerships or have received investment from much bigger drug firms, including Bayer, GlaxoSmithKline, Pfizer, Merck and Novartis. A quick search on recruitment websites reveals most of these pharma firms are actively seeking to hire their own gene therapy scientists too.

全球已有约 2,700例正在进行或已经批准的利用基因治疗的临床试验,目的是攻克癌症、肌肉萎缩和镰状细胞贫血在内的多种疾病。这些临床试验背后的小基因治疗公司大多有大型医药公司的赞助或合作,包括拜耳、葛兰素史克、辉瑞、默克和诺华等。随便在招聘网站上搜索一下就能发现,这些制药公司大多也正在积极招聘自己的基因治疗科学家。

One reason for the rise in demand for skilled workers is the huge range of expertise likely to be needed as gene therapies begin to become available.


“It is a really multi-disciplinary field,” says Güneş Taylor, a researcher at The Francis Crick Institute in London. She has been using gene editing techniques as part of her studies on the sex chromosomes, which could eventually be used to help people with fertility problems or developmental sex disorders such as Rokitansky syndrome, where girls can be born without a womb. “We need molecular scientists, engineers and computer scientists to help us interpret the huge amounts of data modern genetic techniques produce,” she says.

伦敦弗朗西斯・克里克研究院的研究员泰勒(Güneş Taylor)说,“基因治疗真的是一个多学科的领域”。她在性染色体的研究中用到了基因编辑技术,其研究最终能够帮助不孕不育或有性发育障碍的人,比如苗勒管发育不全患者,即可能先天性没有子宫的女性。她说:“需要分子科学家、工程师和计算机学家帮助我们解读现代基因技术产生的大量数据。”

While salaries will depend on the qualifications needed for each role, they are likely to be higher than average due to the high skill levels required. Medical geneticists, for example, can expect to earn between $39,870 and $134,770 annually while a bioinformatician, who helps to interpret genetic data, would earn $35,620-$101,030 a year, according to the National Human Genome Research Institute.

虽然薪资取决于各个岗位所需的资历,但这些职位的薪资有望高于平均水平,因为要求的技能水平较高。据国家人类基因组研究所的资料,医学遗传学家每年收入为39,870 到134,770美元,帮助解读遗传数据的生物信息学家每年能收入35,620到101,030美元。

“There is a lot of hype around gene editing and if even some of those are to be realised, it will involve a lot of people doing research,” says Taylor. “But as treatments start to emerge, we will also need clinicians and ethicists to help us with some of the issues that might be involved.”


Taylor uses a powerful new gene editing tool known as CRISPR-Cas9, which harnesses part of the defence mechanism used by bacteria to edit genes in other organisms. Its invention five years ago has transformed the speed and cost of editing genes, allowing scientists to accurately delete troublesome genes or create precise breaks in the DNA where new genes can be inserted. It has spurred a surge in research to identify defective genes in diseases.


While not many diseases can simply be turned off by deleting these defective genes, CRISPR-Cas9 has opened a new door for treating patients and unravelling how other conditions might be tackled.

虽然不是很多疾病能通过简单地删除缺陷基因而解决,但 CRISPR-Cas9为治疗病患打开了一扇新的大门,⑹究W家可怎又手其他情况。

“It is such an exciting time to be a molecular biologist,” says Taylor. “I have wanted to be a scientist since I was 15 years old and ended up working on gene editing by chance. There can be days where I’m in the laboratory doing repetitive work, but every day is different and it lets me pursue answers to some big questions.”


However, the scale at which the potential of gene editing can be realised will depend on how the regulatory environment evolves over the coming years. It remains a controversial approach because little is known about the long-term effects of altering a person’s DNA. Unintended changes could cause cells to turn cancerous, for example, or could trigger an immune response if the patient’s body reacts to the introduced gene.


There are ethical issues too, particularly surrounding the editing of genes in egg and sperm cells rather than those of other adult cells in the body. This could be used to combat diseases that are passed down through families, generation to generation, but it also raises the prospect of tinkering with other traits like eye colour or height.


For this reason, genetic editing of plants, animals and humans is extremely tightly controlled in places like Europe, while in the US, slightly more relaxed rules have allowed some clinical trials to go ahead.


China is currently leading the world in gene editing. Earlier this year it emerged that it had approved clinical trials involving 300 patients that will use CRISPR-Cas9 to treat a range of conditions. Scientists in China have also already used the technique to treat 86 patients suffering from cancer and HIV.


While many of China’s gene therapy pioneers were trained abroad, they are now teaching a new generation of medical students how to use techniques like CRISPR within the country. The Chinese government has also prioritised gene editing as part of its latest five-year plan that will see billions of dollars ploughed into research.


But as gene editing begins to be used on patients, there are some who are uncomfortable with the idea of tinkering with the code that gives each of us life. Already the use of genetics to diagnose diseases that can be passed to children and grandchildren is leading to a rapid increase in another occupation that just a few years ago did not exist - genetic counsellors.


“As patients and medical staff have to take difficult decisions that involve genetics, they will need support to interpret the information they are being given,” says Christine Patch, vice president of the European Society for Human Genetics and a genetic counsellor.

欧洲人类遗传学会副主席帕奇(Christine Patch)也是一名遗传顾问,她说:“在病患和医疗人员必须做出有关遗传改造的困难决定时,需要有人帮助他们解读相关信息。”

The US Bureau of Labor Statistics ranks genetic counsellors as one of its top 20 fastest growing jobs. It predicts the number of jobs available for experts who can interpret genetic information, offer support and advice to medical staff and guide patients through the decisions they will need to take will increase by 29% by 2026.


“Gene therapy is going to involve some difficult choices for patients and they will need to consider the risks just as they would with any other treatment,” warns Patch. “To do this they will need to be able to understand what is involved. Healthcare professionals will also need to increase their genetics knowledge and there is going to be a growing role for people with an expertise in this.”


本文由 语料库 作者:Tmxchina 发表,其版权均为 语料库 所有,文章内容系作者个人观点,不代表 语料库 对观点赞同或支持。如需转载,请注明文章来源。