纽约时报 | 科技医疗:战胜疾病的巧妙新技术

The ingenious new tricks to beat disease 科技医疗:战胜疾病的巧妙新技 […]

The ingenious new tricks to beat disease

According to the World Health Organization, so-called Neglected Tropical Diseases (NTDs) affect more than one billion people and cost developing economies billions of dollars every year.

据世界卫生组织(World Health Organization)称,所谓“被忽视热带病”(NTDs)的这类疾病影响着全世界10多亿人,每年给发展中国家造成数十亿美元的损失。

Populations living in poverty, without adequate sanitation and in close contact with infectious vectors such as livestock are most affected by these communicable illnesses, which prevail in tropical conditions. To complicate matters, diseases like measles and tuberculosis, which were nearly eradicated a century ago, are again on the rise. And more common, eminently treatable infectious diseases C norovirus and flu, for example C are responsible for thousands of preventable deaths each year.


Fortunately, new medical technology has vast potential to control infection, contain outbreak, even deliver life-saving supplies to remote regions affected by these diseases. From antimicrobial paint to powdered vaccines to drone-delivered organs, these innovations are fast becoming a clinical reality.


In the short-term, such tools can improve survival rate for patients affected by a host of maladies; long-term, they may help us understand pathogen epidemiology, essential to the development of global disease control programs.


Ouchless insulin


Certain medicines can only be delivered by injection. The constant pinprick of needles is painful for patients and cumbersome for healthcare providers, while a shortage of sterile hypodermic needles in some areas can lead to infection. Now, researchers from MIT’s Koch Institute for Integrative Cancer Research and Harvard’s Brigham and Women's Hospital have engineered a coating that they claim can safely carry insulin beyond the obstacles of the digestive system and into the bloodstream C a kind of edible Swiss Army knife that can deliver life-saving medicine without the pain of needle injection.

有些药物的接受只能通过注射。但长期打针对患者来说是痛苦的,对医疗保健提供方也是很麻烦,在有些地区,因为缺乏无菌皮下注射针头有可能让接受注射者感染细菌。现在,麻省理工学院柯克综合癌症研究所(Koch Institute for Integrative Cancer Research)和哈佛大学布里格姆妇科医院(Brigham and Women's Hospital)的研究人员设计了一种涂层,他们声称此技术可以安全地携带胰岛素穿过消化系统的障碍物,进入人体血液,这就像一种可以食用的瑞士刀,可以提供救命药,又没有药物注射的痛苦。

Once swallowed, the pill issues a spring-activated dart of insulin directly into the wall of the stomach. Patients with type 1 diabetes C the version of the disease in which the immune system attacks pancreatic cells that produce blood sugar-regulating insulin C might soon be able to manage their condition with the help of this pea-sized device.


The researchers reported their findings in the journal Science, explaining that they were “inspired by the leopard tortoise’s ability to passively reorient”: the pill’s applicator knows how to position itself so that its microscopic needle is trained directly toward stomach tissue, without perforating any gastric organs along the way.


The antimicrobial paint that can kill ‘superbugs’


About 10% of hospital patients contract a new illness during their stay C often after coming into contact with germ-laden equipment and surfaces. This results in about 100,000 deaths annually in the US alone; globally, 700,000 people die each year as a result of drug-resistant infections, including tuberculosis, HIV and malaria. The World Health Organization recently described antibiotic resistance as a “global health emergency”.


In response, the US Food and Drug Administration and several leading paint companies have teamed up to develop a variety of antimicrobial coatings that can be applied to medical equipment and supplies. These additives are first introduced into a paint, ink or lacquer during the manufacturing process; the paint is then applied to a surface, which, once dried, becomes resistant to microbes, mould, and fungi. One company, BioCote, produces antimicrobial paint for purchase commercially, offering a promising mechanism for fighting so-called “superbugs”: the antibiotic-resistant bacteria that can infect hospital surfaces and harm patients who are already immunocompromised.

为此,美国食品和药物管理局(US Food and Drug Administration)和几家领先的涂料公司合作开发了多种可用于医疗设备和用品的抗菌涂料。这N抗菌添加剂在生产过程中加入到涂料、油墨或者油漆当中,然后将@种涂料覆盖在设备表面,干燥之后,就能抵御微生物、霉菌和真菌。一家名为BioCote的公司生产用于商业采购的抗菌涂料,为抵御所谓的“超级细菌”提供了一个充满希望的机制。这种耐药性细菌可以感染医院建筑或设备的表面,对免疫功能已经受损的病人会造成进一步的伤害。

Ironically, the same chemicals in antibacterial products C gels, antiseptics and hand sanitisers C used to scour hospitals and clean equipment are known to actually promote these antibacterial strains, killing off good and bad bacteria alike. Since their advent in the early 20th Century, antibiotics have saved countless lives, eradicating diseases caused by harmful bacteria; but, just as overuse of the drugs has weakened their efficacy, antimicrobial paint isn’t a fail-safe measure.


It’s safe to say that, as long as they don’t rely exclusively on one method, hospitals can now add antibacterial paint to their disease-fighting toolbox.


Crypto-anchors may put an end to counterfeit pharmaceuticals


Fraud costs the global economy more than £3tn a year. From corporate corruption to fake electronics to identity theft, double-dealing is pervasive in almost every industry, and that includes healthcare: in some countries, nearly 70% of certain drugs are counterfeit.


Earlier in February, the World Health Organization reported that fake leukemia medicine, packaged for the UK market to look like the genuine drug Iclusig, was circulating in Europe and the Americas. And physicians have found traces of ecstasy and Viagra ingredients in pills posing as antimalarial medicine.


It turns out that ensuring the authenticity of medicine is nearly as difficult as monitoring bank accounts or consumer electronics, for a few reasons. Complex supply chains, comprised of dozens of suppliers in multiple countries, make it difficult to prevent bad actors from tampering with drugs. The market for legal medicine has surpassed that of illegal narcotics, a fact not lost on drug dealers; and when a patient doesn’t blossom back to health after taking a (counterfeit) drug, doctors generally blame the illness, and not the pill.


That may all soon change, thanks to a team of IBM researchers who are developing crypto-anchors: tamper-proof digital fingerprints that can be embedded into products and linked to a blockchain to prove their authenticity (the blockchain is a growing list of digital records called blocks, which are linked through encrypted code).


Smaller than a grain of sand, these crypto-anchors can take many forms: tiny edible computers or optical codes that can be put on pills to separate them from fake meds, in much the same way that diamonds are measured and marked to distinguish them from imitation stones.


Researchers offered the example of embedding a crypto-anchor in an edible shade of magnetic ink, which could then be used to dye a malaria pill. A drop of water would visibly activate the code, assuring consumers the pill is both authentic and safe to consume.


Since their identifying codes cannot be duplicated or copied, crypto-anchors are highly secure, offering patients, doctors and healthcare providers added security in an increasingly fraudulent pharmaceutical landscape.


BRCK: free public Wifi


We take internet connectivity for granted, but many lack reliable access to a network connection. Breakdowns in digital communication during a health crisis can have devastating consequences: missed dosages, inaccurate records, poor decision-making, medical errors, and incomplete information regarding disease outbreaks.


In Africa, a continent whose 1.1 billion inhabitants rely mostly on mobile internet, connectivity is notoriously bad; the problem is compounded by the fact that users are often trying to access content that sits on a remote server somewhere in the United States or Europe.


Enter Moja, a free public Wifi device created by the BRCK team designed to be used in areas with limited internet access. More than just a hardware router, this content delivery network (CDN) effectively replaces spotty C and expensive Ccellular data, allowing users to browse the internet and social media at no additional cost, since anyone within range of Moja’s signal can connect to the internet for free.


Moja’s network of servers hosts content for Facebook, Netflix and Youtube, but it’s easy to see how this improved connection might have tremendous impact for disease management: remote users will be able to message one another and share information in real time, thereby streamlining communication between doctors, patients, hospitals and healthcare volunteers.


Plus, BRCK’s hardware is designed to stand up to the challenges of weather and environment: Moja runs through sturdy, waterproof aluminium routers with multiple power ports, ensuring that applications run smoothly even when conditions are tough.


本文由 语料库 作者:Tmxchina 发表,其版权均为 语料库 所有,文章内容系作者个人观点,不代表 语料库 对观点赞同或支持。如需转载,请注明文章来源。